Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Kenneth W. Muir* and David G. Morris

Department of Chemistry, University of Glasgow, Glasgow G12 8QQ, Scotland

Correspondence e-mail: ken@chem.gla.ac.uk

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.045$
$w R$ factor $=0.116$
Data-to-parameter ratio $=14.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

N, N-Dimethyl- N^{\prime}-(o-fluorobenzoyl)hydrazide

The title dimethylhydrazide $o-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{NHNMe}_{2}$, or $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{FN}_{2} \mathrm{O}$, is compared structurally both with other aroyl hydrazides, $\mathrm{ArC}(\mathrm{O}) \mathrm{NHNH}_{2}$, and with related trimethylammonio ylides, $\mathrm{Me}_{3} \mathrm{~N}(+)-\mathrm{N}(-) \mathrm{C}(\mathrm{O}) \mathrm{Ar}$.

Comment

The title compound, (I), was prepared as a precursor to the corresponding trimethylammonio-stabilized nitrogen ylide $\mathrm{Me}_{3} \mathrm{~N}(+)-\mathrm{N}(-)-\mathrm{C}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{F}-$ o. Its structure was determined in the course of an investigation into the ability of nitrogen ylides to act as ligands with transition metals (Morris et al., 2003).

(I)

The presence of the ortho-fluoro substituent causes (I) to adopt a conformation (Fig. 1) which precludes conjugation across the $\mathrm{C} 6-\mathrm{C} 7$ bond $\left[\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{N} 1=122.5(2)^{\circ}\right]$. Possibly as a result, the $\mathrm{C} 6-\mathrm{C} 7$ bond $[1.509(2) \AA$] is $0.02 \AA$ longer than the database average value obtained by Orpen et al. (1992) for such bonds, whereas all other bond lengths in (I) agree within $0.008 \AA$ ith appropriate average values from the Cambridge Structural Database (Allen, 2002). Phenylhydrazides, in general, adopt much flatter conformations than that found in (I). For example, in $\mathrm{PhC}(\mathrm{O}) \mathrm{NHNH}_{2}$, (II), the $\mathrm{C}(\mathrm{Ph})-\mathrm{C}(\mathrm{Ph})-\mathrm{C}(\mathrm{O})-\mathrm{N}$ torsion angle is 30° (Kallel et al., 1992), while in $o-\mathrm{HOC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{NHNH}_{2}$, (III), the corresponding angle is only 3° (Mikenda et al., 1993). In (I), the $\mathrm{C} 6-\mathrm{C} 7-\mathrm{N} 1-\mathrm{N} 2$ torsion angle is $175.9(1)^{\circ}$. Corresponding values in other hydrazides are almost invariably close to 180°;

Figure 1
View of (I), shown with 50% probability displacement ellipsoids.

Figure 2
Part of a stack of hydrogen-bonded molecules related by the b-glide plane normal to the a axis. The direction of view is down the a axis and b runs from left to right in the plane of the drawing.

Figure 3
The unit-cell contents, viewed in projection down the a axis.
the only exception we are aware of is provided by $\mathrm{Ph}(\mathrm{CO}) \mathrm{NMeNMe}_{2}$, where this torsion angle is only 8.5° (Knapp et al., 1981), presumably for steric reasons. In (I), the $\mathrm{N}-\mathrm{N}$ distance $\left[1.420(2) \AA\right.$] and $\mathrm{C}-\mathrm{N}-\mathrm{N}$ angle [119.8 (1) ${ }^{\circ}$] are typical of hydrazides, such as (II) and (III), whereas in the closely related $\mathrm{Me}_{3} \mathrm{~N}(+)-\mathrm{N}(-) \mathrm{C}(\mathrm{O}) \mathrm{Ar}$ glides, the $\mathrm{N}-\mathrm{N}$ distances are longer and the $\mathrm{C}-\mathrm{N}-\mathrm{N}$ angles more acute, e.g. 1.470 (3) \AA and $114.2(3)^{\circ}$ when $\mathrm{Ar}=\mathrm{Ph}$ (Cameron et al., 1972), and 1.474 (1) \AA and 114.8 (1) ${ }^{\circ}$ when $\mathrm{Ar}=p-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}$ (Morris et al., 2003). QUEST and CONQUEST search programs were used with Version 5.24 of the Cambridge Structural Database (Allen, 2002) to obtain some torsion angles not given by the original authors.

Glide-plane-related molecules connected by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Fig. 2) form stacks which run parallel to the b axis. These stacks pack so that alternate layers parallel to (001) contain, respectively, aromatic rings and terminal NMe_{2} groups, as can be seen by viewing the contents of the unit cell in projection down the a axis (Fig. 3). As expected (Glusker et al., 1994), the F atoms do not participate in the hydrogen bonding.

The atomic $U^{i j}$ values are moderately well reproduced by a TLS analysis (Schomaker \& Trueblood, 1968): $R_{2}=\left(\Delta U^{2} /\right.$ $\left.U^{2}\right)^{1 / 2}=0.10$; they also pass the Hirshfeld (1976) rigid-bond test, the worst discrepancy being $\Delta U=0.0018(12) \AA^{2}$ for C4-C5.

Experimental

The title compound was prepared by the method of Smith et al. (1968).

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{FN}_{2} \mathrm{O}$
Mo $K \alpha$ radiation
$M_{r}=182.2$
Cell parameters from 1794
Orthorhombic, Pbca
$a=11.8503$ (5) A
$b=7.8530$ (3) \AA
$c=19.9630$ (9) A
$V=1857.77(13) \AA^{3}$
$Z=8$ reflections
$\theta=2.9-26.0^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=100$ (2) K
Needle, colourless
$0.40 \times 0.05 \times 0.05 \mathrm{~mm}$
$D_{x}=1.303 \mathrm{Mg} \mathrm{m}^{-3}$

$$
\begin{aligned}
& R_{\text {int }}=0.057 \\
& \theta_{\max }=25.9^{\circ} \\
& h=-14 \rightarrow 14 \\
& k=-9 \rightarrow 9 \\
& l=-24 \rightarrow 24 \\
& \\
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.048 P)^{2}\right. \\
& \quad+0.85 P] \\
& \quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0 \\
& \Delta \rho_{\max }=0.23 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.25 \mathrm{e}^{-3}
\end{aligned}
$$

Nonius KappaCCD diffractometer

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.116$
$S=1.11$
1797 reflections
124 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1

Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	$0.91(2)$	$1.98(2)$	$2.8801(19)$	$168.8(19)$

Symmetry code: (i) $\frac{1}{2}-x, y-\frac{1}{2}, z$.
All H atoms were initially located from difference syntheses. The H atom bonded to N 1 was freely refined. Other H atoms were positioned geometrically and refined with riding constraints, assuming $\mathrm{C}-\mathrm{H}$ bond lengths of 0.93 and $0.96 \AA$, respectively, for $s p^{2}$ and $s p^{3} \mathrm{C}$ atoms. In the case of each of the two methyl groups, a single orientation parameter was also refined.

Data collection: COLLECT in KappaCCD Control Software (Nonius, 2000); cell refinement: HKL SCALEPACK (Otwinowski \& Minor, 1997); data reduction: HKL DENZO (Otwinowski \& Minor, 1997) and SCALEPACK; programs) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinG (Farrugia, 1999).

We thank Glasgow University and the EPSRC for support.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Cameron, A. F., Hair, N. J. \& Morris, D. G. (1972). J. Chem. Soc. Perkin Trans. 2, pp. 1071-1074.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Glusker, J. P., Lewis, M. \& Rossi, M. (1994). Crystal Structure Analysis for Chemists and Biologists, pp. 735-738. New York: VCH Publishers.

organic papers

Hirshfeld, F. L. (1976). Acta Cryst. A32, 239-244.
Kallel, A., Amor, B. H., Svoboda, I. \& Fuess, H. (1992). Z. Kristallogr. 198, 137-140.
Knapp, S., Toby, B. H., Sebastian, N., Krogh-Jesperson, K. \& Potenza, J. A. (1981). J. Org. Chem. 46, 2490-2496.

Mikenda, W., Pertlik, F. \& Steinwender, E. (1993). Monatsh. Chem. 124, 867875.

Morris, D. G., Muir, K. W. \& Chii, C. O. W. (2003). Unpublished results.
Nonius (2000). KappaCCD Control Software. Nonius BV, Delft, The Netherlands.

Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. \& Taylor, R. (1992). International Tables for Crystallography, Vol. C, pp. 691-706. Dordrecht: Kluwer Academic Publishers.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Schomaker, V. \& Trueblood, K. N. (1968). Acta Cryst. B24, 63-76.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Smith, R. F., Bates, A. C., Battisti, A. J., Byrnes, P. G., Mroz, C. T., Smearing, T. J. \& Albrecht, F. X. (1968). J. Org. Chem. 33, 851-855.

